Improved PCR Amplification of Broad Spectrum GC DNA Templates
نویسندگان
چکیده
Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.
منابع مشابه
Improved PCR method for amplification of GC-rich DNA sequences.
Most housekeeping genes, tumor-suppressor genes, and approx 40% of tissue-specific genes contain G+C sequences in their promoter region that were very difficult to amplify. In this report, we propose an improved polymerase chain reaction (PCR) method to be used for successful amplification of the tissue factor pathway inhibitor (TFPI)-2 gene promoter region that exhibit >70% G+C content in a se...
متن کاملA fundamental study of the PCR amplification of GC-rich DNA templates
A theoretical analysis is presented with experimental confirmation to conclusively demonstrate the critical role that annealing plays in efficient PCR amplification of GC-rich templates. The analysis is focused on the annealing of primers at alternative binding sites (competitive annealing) and the main result is a quantitative expression of the efficiency (eta) of annealing as a function of te...
متن کامل1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer
BACKGROUND Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In ...
متن کاملCharacterization of the synthetic compatible solute homoectoine as a potent PCR enhancer.
Different substances such as dimethyl sulfoxide, tetramethylene sulfoxide, 2-pyrollidone, and the naturally occurring compatible solute betaine enhance PCR amplification of GC-rich DNA templates with high melting temperatures. In particular, cyclic compatible solutes outperform traditional PCR enhancers. We therefore investigated the effects that cyclic naturally occurring ectoine-type compatib...
متن کاملA rapid and simple transcriptional sequencing method for GC-rich DNA regions.
In genome sequencing project, we encounter the DNA regions that often contain stable secondary structure with high GC content. These regions are difficult to not only amplify by PCR for template preparations, but also determine the DNA sequences using standard Cycle sequencing (CS) method. Transcriptional sequencing (TS) is a unique DNA sequencing method using RNA polymerase, and is based on th...
متن کامل